Using Dependency Grammar Features in Whole Sentence Maximum Entropy Language Model for Speech Recognition
نویسندگان
چکیده
In automatic speech recognition, the standard choice for a language model is the well-known n-gram model. The n-grams are used to predict the probability of a word given its n-1 preceding words. However, the n-gram model is not able to explicitly learn grammatical relations of the sentence. In the present work, in order to augment the n-gram model with grammatical features, we apply the Whole Sentence Maximum Entropy framework. The grammatical features are head-modifier relations between pairs of words, together with the labels of the relationships, obtained with the dependency grammar. We evaluate the model in a large vocabulary speech recognition task with Wall Street Journal speech corpus. The results show a substantial improvement in both test set perplexity and word error rate.
منابع مشابه
A Novel Approach to Conditional Random Field-based Named Entity Recognition using Persian Specific Features
Named Entity Recognition is an information extraction technique that identifies name entities in a text. Three popular methods have been conventionally used namely: rule-based, machine-learning-based and hybrid of them to extract named entities from a text. Machine-learning-based methods have good performance in the Persian language if they are trained with good features. To get good performanc...
متن کاملDiscriminative maximum entropy language model for speech recognition
This paper presents a new discriminative language model based on the whole-sentence maximum entropy (ME) framework. In the proposed discriminative ME (DME) model, we exploit an integrated linguistic and acoustic model, which properly incorporates the features from n-gram model and acoustic log likelihoods of target and competing models. Through the constrained optimization of integrated model, ...
متن کاملUnsupervised Discriminative Language Model Training for Machine Translation using Simulated Confusion Sets
An unsupervised discriminative training procedure is proposed for estimating a language model (LM) for machine translation (MT). An English-to-English synchronous context-free grammar is derived from a baseline MT system to capture translation alternatives: pairs of words, phrases or other sentence fragments that potentially compete to be the translation of the same source-language fragment. Us...
متن کاملImprovement of a Whole Sentence Maximum Entropy Language Model Using Grammatical Features
In this paper, we propose adding long-term grammatical information in a Whole Sentence Maximun Entropy Language Model (WSME) in order to improve the performance of the model. The grammatical information was added to the WSME model as features and were obtained from a Stochastic Context-Free grammar. Finally, experiments using a part of the Penn Treebank corpus were carried out and significant i...
متن کاملStructure and performance of a dependency language model
Ciprian Chelba David Engle Frederick Jelinek Victor Jimenez Sanjeev Khudanpur Lidia Mangu Harry Printz Eric Ristad Ronald Rosenfeld Andreas Stolcke Dekai Wu Johns Hopkins University Baltimore, MD Department of Defense Fort Meade, MD U Politecnica de Valencia Valencia, Spain IBM Watson Research Center Yorktown Heights, NY Princeton University Princeton, NJ Carnegie Mellon Pittsburgh, PA SRI Inte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010